Register training material
17 materials found

Keywords: computer-science  or Populations 


Introducing Bivi.co

Introduction to the Bivi community presented as the introductory talk at the 1st Bivi Annual Meeting.
Created at: 1st BiVi Annual Meeting.

Scientific topics: Phylogenetics, Pathway or network

Keywords: Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations

Resource type: Video

Infectious Disease Host/Pathogen Relationships

Bruno Sobral demonstrates how collaboration with the bench scientists to learn about their needs, uses and challenges can lead to design of more effective resources for data exploration and analysis. He emphasises the importance of designing in a user-centric manner and highlights the importance...

Keywords: Populations, HCI

Resource type: Video

Metagenomics

Susannah Tringe talks about metagenomics analysis tools and the challenges of gaining a systems-level understanding of a microbial community. She notes that there are some good analysis tools available for analysis at the 16S sequence and unassembled metagenome level, but more effort into...

Scientific topics: Phylogenetics

Keywords: Genome, Phylogenetics, Populations

Resource type: Video

Geographic & Evolutionary Visualization

Daniel Janies showcases SupraMap, a web-based app that integrates genetic sequences of pathogens with geographic data points to map the spread of diseases and track mutations.This video was filmed and distributed with permission under a Creative Commons license.
Created at: VIZBI 2013.

Scientific topics: Phylogenetics

Keywords: Phylogenetics, Populations

Resource type: Video

BBSRC: Data and Data Visualisation

Michael Ball from BBSRC's closing remarks on Data and Data Visualisation from 1st BiVi in 2014.
Created at: 1st BiVi Annual Meeting.

Scientific topics: Phylogenetics, Pathway or network

Keywords: Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations, Information visualisation

Resource type: Video

Evaluation of Helium: Visualisation of Large Scale Plant Pedigrees

Poster presentation at 1st BiVi in 2014 regarding the user evaluation of the Helium visualisaiton tool.
Created at: 1st BiVi Annual Meeting.

Keywords: Genome, Populations, HCI

Resource type: Poster

Art and Science: A partnership catalyzing discovery in biomedicine

A 3rd BiVi 2017 Keynote Presentation by Bang Wong, Broad Institute of MIT & Harvard and Department of Art as Applied to Medicine, Johns Hopkins University School of MedicineChaired by: Geoff BartonThe data generated by the biomedical research community hold tremendous potential to inform our...

Scientific topics: Phylogenetics, Pathway or network

Keywords: Anatomy Physiology and Atlases, Cells and Organisms, Genome, Molecular, Pathway, Phylogenetics, Populations, Communication, Information visualisation

Resource type: Video

Visualising dynamic genetics in human populations

Genetic and environmental variation affect all complex human traits and disorders. Recent large-scale genome-wide association studies have identified some of the specific genetic variants, and we often assume these associations will hold true irrespective of context. However, our research shows...

Keywords: Populations

Resource type: Video

Big Data, Genes, and Medicine

This course distills for you expert knowledge and skills mastered by professionals in Health Big Data Science and Bioinformatics. You will learn exciting facts about the human body biology and chemistry, genetics, and medicine that will be intertwined with the science of Big Data and skills to...

Keywords: life-sciences, computer-science, bioinformatics, algorithms

Bioinformatics Capstone: Big Data in Biology

In this course, you will learn how to use the BaseSpace cloud platform developed by Illumina (our industry partner) to apply several standard bioinformatics software approaches to real biological data.

In particular, in a series of Application Challenges will see how genome assembly can be used...

Keywords: life-sciences, computer-science, health-informatics, algorithms

Finding Hidden Messages in DNA (Bioinformatics I)

Named a top 50 MOOC of all time by Class Central!

This course begins a series of classes illustrating the power of computing in modern biology. Please join us on the frontier of bioinformatics to look for hidden messages in DNA without ever needing to put on a lab coat.

In the first half of the...

Keywords: life-sciences, computer-science, health-informatics, algorithms

Finding Mutations in DNA and Proteins (Bioinformatics VI)

In previous courses in the Specialization, we have discussed how to sequence and compare genomes. This course will cover advanced topics in finding mutations lurking within DNA and proteins.

In the first half of the course, we would like to ask how an individual's genome differs from the...

Keywords: life-sciences, computer-science, health-informatics, algorithms

Genome Sequencing (Bioinformatics II)

You may have heard a lot about genome sequencing and its potential to usher in an era of personalized medicine, but what does it mean to sequence a genome?

Biologists still cannot read the nucleotides of an entire genome as you would read a book from beginning to end. However, they can read...

Keywords: life-sciences, computer-science, health-informatics, algorithms

Biology Meets Programming: Bioinformatics for Beginners

Are you interested in learning how to program (in Python) within a scientific setting?

This course will cover algorithms for solving various biological problems along with a handful of programming challenges helping you implement these algorithms in Python. It offers a gently-paced introduction...

Keywords: life-sciences, computer-science, health-informatics, software-development

Genomic Data Science and Clustering (Bioinformatics V)

How do we infer which genes orchestrate various processes in the cell? How did humans migrate out of Africa and spread around the world? In this class, we will see that these two seemingly different questions can be addressed using similar algorithmic and machine learning techniques arising from...

Keywords: life-sciences, computer-science, health-informatics, algorithms

Comparing Genes, Proteins, and Genomes (Bioinformatics III)

Once we have sequenced genomes in the previous course, we would like to compare them to determine how species have evolved and what makes them different.

In the first half of the course, we will compare two short biological sequences, such as genes (i.e., short sequences of DNA) or proteins. We...

Keywords: life-sciences, computer-science, health-informatics, algorithms

Molecular Evolution (Bioinformatics IV)

In the previous course in the Specialization, we learned how to compare genes, proteins, and genomes. One way we can use these methods is in order to construct a "Tree of Life" showing how a large collection of related organisms have evolved over time.

In the first half of the course, we will...

Keywords: life-sciences, computer-science, health-informatics, algorithms