Keywords: computer-science or Biomodelling
At the lowest scale, PhysiCell uses BioFVM solver to simulate the chemical microenvironment using partial differential equations which model the diffusion, uptake and secretion of substrates and signalling molecules. At the cell scale, PhysiCell uses mechanical equations to model individual cell...
COBREXA.jl provides tutorials and notebooks with the purpose of explaining the most important concepts and functions for metabolic modelling and model handling to users, and then practicing them.
The documentation contains basic tutorials (explaining the core package concepts and basic design...
This tutorial aims to be an introduction to
i) the preparation of the Prior knowledge network (PKN) of signaling pathways and
ii) the training of the PKN against biochemical data to create cell-specific models.
Boolean modelling uses a simple representation of biological entities as either active or inactive, and describes their relations with logical formulas. MaBoSS extends Boolean modelling by adding a notion of continuous time, with the introduction of rates of (in)activation. This enable the...
COBREXA.jl is a new software package to enable the analysis and simulation of large metabolic models by taking advantages of modern HPC infrastructure. Mainly, it advanced the scalability of constraint-based method, using the Julia programing language and its mathematic ecosystem as a base...
PerMedCoE is the HPC/Exascale Centre of Excellence for Personalised Medicine in Europe. The goal of PerMedCoE is to provide an efficient and sustainable entry point to the HPC/Exascale-upgraded methodology to translate omics analyses into actionable models of cellular functions of medical relevance.
BioSimulations is a web application for sharing and re-using biomodels, simulations, and visualizations of simulations results. BioSimulations supports a wide range of modeling frameworks (e.g., kinetic, constraint-based, and logical modeling), model formats (e.g., BNGL, CellML, SBML), and...
Scientific topics: Simulation experiment, Systems biology, Computational biology
Operations: Modelling and simulation, Visualisation
Keywords: SystemsBiology, ComputationalBiology, Computational modelling, Modeling, Biomodelling, Model, Kinetic modeling, SED-ML, COMBINE
Resource type: Documentation
A suite of >50 tutorials to enable beginners, as well as intermediate and advanced users to practice a wide variety of COBRA methods. Each tutorial is presented in a variety of formats, including as a MATLAB live script, which is an interactive document, or narrative...
Keywords: Biomodelling
Resource type: Tutorial
This course distills for you expert knowledge and skills mastered by professionals in Health Big Data Science and Bioinformatics. You will learn exciting facts about the human body biology and chemistry, genetics, and medicine that will be intertwined with the science of Big Data and skills to...
In this course, you will learn how to use the BaseSpace cloud platform developed by Illumina (our industry partner) to apply several standard bioinformatics software approaches to real biological data.
In particular, in a series of Application Challenges will see how genome assembly can be used...
Named a top 50 MOOC of all time by Class Central!
This course begins a series of classes illustrating the power of computing in modern biology. Please join us on the frontier of bioinformatics to look for hidden messages in DNA without ever needing to put on a lab coat.
In the first half of the...
In previous courses in the Specialization, we have discussed how to sequence and compare genomes. This course will cover advanced topics in finding mutations lurking within DNA and proteins.
In the first half of the course, we would like to ask how an individual's genome differs from the...
You may have heard a lot about genome sequencing and its potential to usher in an era of personalized medicine, but what does it mean to sequence a genome?
Biologists still cannot read the nucleotides of an entire genome as you would read a book from beginning to end. However, they can read...
Are you interested in learning how to program (in Python) within a scientific setting?
This course will cover algorithms for solving various biological problems along with a handful of programming challenges helping you implement these algorithms in Python. It offers a gently-paced introduction...
How do we infer which genes orchestrate various processes in the cell? How did humans migrate out of Africa and spread around the world? In this class, we will see that these two seemingly different questions can be addressed using similar algorithmic and machine learning techniques arising from...
Once we have sequenced genomes in the previous course, we would like to compare them to determine how species have evolved and what makes them different.
In the first half of the course, we will compare two short biological sequences, such as genes (i.e., short sequences of DNA) or proteins. We...
In the previous course in the Specialization, we learned how to compare genes, proteins, and genomes. One way we can use these methods is in order to construct a "Tree of Life" showing how a large collection of related organisms have evolved over time.
In the first half of the course, we will...