Register training material
27 materials found

Authors: allegra.via Via  or Terri Attwood 


Bioinformatics - the Power of Computers in Biology: A Practical Guide

This Practical Guide in the Bringing Bioinformatics into the Classroom series introduces simple bioinformatics approaches for database searching and sequence analysis. A ‘mystery’ gene is used as an exemplar: we first characterise the gene, then use it to explore the impact of gene loss in...

Scientific topics: Sequence analysis

Keywords: Basic bioinformatics, Basic linux commands, Bioinformatics schools, Gene loss, Genetic mutation, Raspberry pi computers, Sequence analysis, Sequence database searching, Training materials

A Critical Guide to the neXtProt knowledgebase: querying using SPARQL

This Critical Guide in the Introduction to Bioinformatics series briefly outlines how to explore the neXtProt human protein database using SPARQL. While text indexation has made database contents more accessible, being able to combine search criteria for specific content permits more powerful...

Scientific topics: Database management

Keywords: Human protein database, Introduction bioinformatics, Introduction nextprot, Nextprot data model, Rdf triples, Semantic triples, Sparql queries, Sparql syntax, Training material

Using Bioinformatics to Understand Genetic Diseases: A Practical Guide

This Practical Guide in the Bringing Bioinformatics into the Classroom series outlines a number of basic bioinformatics approaches that can be used to understand the molecular basis of genetic diseases. A rare variation in the insulin gene is discussed, and the impact of the variation on the gene...

Keywords: Basic bioinformatics, Bioinformatics schools, Gene finding, Genetic mutation, Insulin structure, Sequence alignment, Sequence database searching, Training material

A Critical Guide to the PDB

This Critical Guide in the Introduction to Bioinformatics series provides a brief outline of the Protein Data Bank – the PDB – the world’s primary repository of biological macromolecular structures. The rationale for creating the resource and the kinds of information it provides are discussed,...

Scientific topics: Database management

Keywords: Introduction bioinformatics, Introduction pdb, Protein structure analysis, Protein structure databases, Protein structures

A Critical Guide to InterPro

This Critical Guide in the Introduction to Bioinformatics series provides an introduction to the InterPro database, the largest, most comprehensive, integrated protein family database in the world. The rationale for creating the resource, the nature of its contributing databases and the kinds of...

Scientific topics: Database management

Keywords: Introduction bioinformatics, Introduction interpro, Protein family classification, Protein family databases, Protein family hierarchies, Protein function annotation, Protein sequence analysis

A Critical Guide to the UniProtKB Flat-file Format

This Critical Guide briefly presents the need for biological databases and for a standard format for storing and organising biological data. Web-based interfaces have made databases more user-friendly, but knowledge of the underlying file format offers a deeper understanding of how to navigate...

Scientific topics: Database management

Keywords: Flat file databases, Flat files, Introduction bioinformatics, Uniprotkb flat file format

A Critical Guide to UniProtKB

This Critical Guide in the Introduction to Bioinformatics series provides a brief outline of the UniProt protein sequence database, with a particular focus on the UniProt Knowledgebase – UniProtKB. The rationale for creating the resource, its contributing databases and the kinds of information...

Scientific topics: Database management

Keywords: Introduction bioinformatics, Introduction uniprot, Protein sequence databases, Uniprot knowledgebase

A Critical Guide to BLAST

This Critical Guide in the Introduction to Bioinformatics series provides an overview of the BLAST similarity search tool, briefly examining the underlying algorithm and its rise to popularity. Several Web-based and stand-alone implementations are reviewed, and key features of typical search...

Keywords: Introduction bioinformatics, Introduction blast, Sequence database searching, Sequence similarity searching

A Critical Guide to Unix

This Critical Guide in the Introduction to Bioinformatics series briefly introduces the Unix Operating System, and provides a subset of some of the most helpful and commonly used commands, including those that allow various types of search, navigation and file manipulation. Several keystroke...

Keywords: Command line, Introduction bioinformatics, Introduction unix, Unix commands, Unix operating system

EMBER - a practical guide to bioinformatics

EMBER is an online practical designed to provide a brief, hands-on introduction to a range of bioinformatics databases and tools on the Web. It comprises basic and slightly more advanced 'chapters', and a number of case studies. Chapters include reflective questions, to stimulate critical...

Interactive bioinformatics 'taster' for students - exploring sickle cell anaemia

Developed in collaboration with the Royal Society, this material provides a short interactive introduction to bioinformatics, and includes a bioinformatics 'game' that simulates database searching and protein sequence analysis, with a focus on sickle cell anaemia. This is a fun activity with...

Intended Learning Outcome Advisor

This tool allows trainers to evaluate Intended Learning Outcomes (ILOs) they've written to accompany their training resources. The tool is able to assess sets of ILOs against representative verbs for each level of Bloom's Taxonomy, verifying both the Bloom's level to which they correspond and the...

Introduction to Biopython

This is a module from the "Python for Biologists" course. The module presents an introduction to Biopython. It shows how to deal with sequences and sequence records, how to download records from NCBI databases, how to run Blast and how to parse XML Blast outputs.

Keywords: Bioinformatics, Biopython, Programming, Python, Python biologists

QuickGuides

A range of Quick Guides to commonly used bioinformatics tools and resources.

Keywords: Blast, Emboss, Mysql, Perl, Phylip, Unixlinux, Velvet

Understanding Multiple Sequence Alignments - Lecture Handouts & Utopia Hands-On

This presentation aims to provide a basic understanding of the range of contexts in which protein sequence alignments are used and are useful, focusing on the importance of sequence similarities and differences, and what they tell us. Overall, the objective is to offer different perspectives and...

Keywords: Multiple sequence alignment, Protein sequence analysis, Sequence analysis

Using R with Python

This is a module from the "Python for Biologists" course. It describes the Python module interfacing the R package for statistics. The module shows how to calculate mean, standard deviation, z-score and p-value of a set of numbers, and how to generate plots. Input files for the scripts presented...

Keywords: Programming, Python, Python biologists

Searching data using Python

This is a module from the "Python for Biologists" course. It describes how to use Python dictionary and set data structures to search your data. In particular, how to use a dictionary to represent the genetic code table and use it to translate a nucleotide sequence into a protein sequence, and...

Keywords: Programming, Python, Python biologists

Pattern Matching

This is a module from the "Python for Biologists" course. It teaches how to do pattern matching in Python, i.e. how to find a substring (or a set of substrings) in a string. To this aim, it introduces the regular expression syntax, and the tools needed to search regular expressions in biological...

Keywords: Pattern matching, Programming, Python, Python biologists

Writing functions in Python programming

This is a module from the "Python for Biologists" course. It deals with functions and how to write and use them. It also introduces namespaces and the tuple data structure. The module contains several exercises and suggested solutions. The text of exercises is also provided in a separate file. 

Scientific topics: Bioinformatics

Keywords: Programming, Python, Python biologists

Python Programs

This is a module from the "Python for Biologists" course. It deals with Python programs, how to write and run them, and how to provide input and generate output. The module also contains exercises and suggested solutions. 

Keywords: Programming, Python, Python biologists

Linear Motifs and Phosphorylation Sites

This is a lecture on linear motifs and phophorylation sites (P-sites). Some materials from other lectures are reused.
The lecture is basically about computational approaches to encode, predict, analyse, and use functional motifs and P-sites.
Here you can find:

    A definition of linear motifs and...

Keywords: Bioinformatics

Bioinformatics: Gene-protein-structure-function

This presentation examines the available in silico tools for protein structure and function prediction. It examines the major protein family databases (PROSITE, PRINTS, Pfam, etc.), and explores why tools like PSI-BLAST, while convenient and easy to use, may not always give optimal results. The...

Keywords: Expert systems, Genequiz, Protein family characterisation, Protein family databases, Protein sequence analysis, Psi blast

InterPro: An introduction

This presentation introduces the background to the InterPro database: what it is, where it came from, and what was the vision behind its creation. It examines in particular whether the database has evolved in line with its original vision, and asks whether the resource is still fit for purpose. 

Keywords: Integrated diagnostic tools, Protein family characterisation, Protein sequence analysis

PRINTS: A protein family database with a difference

A presentation designed to introduce the concept of protein family analysis and characterisation using motif-based methods, with a particular focus on protein fingerprinting. Following a general introduction to sequence analysis, and the fingerprint approach, specific examples are given to...

Keywords: Functional diagnosis, Protein family characterisation, Protein sequence analysis

Parsing data records using Python programming

This is a module from the "Python for Biologists" course. One typical problem in bioinformatics is parsing data files. This module explains how to parse FASTA files and GenBank records. It also introduces the if/elif/else construct to make choice in programming and the list  data structure. The...

Keywords: Bioinformatics, Programming, Python, Python biologists, Record parsing

Introduction to Unix

Introductory lecture to the Unix/Linux command-line

    Description of the computer shell and the command-line interface

    Differences between graphical and command-line interfaces

    The most commond Unix/Linux commands are provided

 
 

Keywords: Bioinformatics, Programming, Unixlinux

Concepts, historical milestones & the central place of bioinformatics in modern biology: a European perspective

Short history of the emergence of bioinformatics as a discipline in Europe, following the near simultaneous advent of high-throughput sequencing techniques and the World Wide Web, which made dissemination of the rapidly accumulating sequence data both simple and feasible on a large scale.

Keywords: Bioinformatics history, Biomolecular databases, Biomolecular sequences, European perspective